C*-algebras associated to quotient maps

Lisa Orloff Clark

University of Otago

PARS 2014

Lisa Orloff Clark (University of Otago) C^{*}-algebras associated to quotient maps

PARS 2014

くほと くほと くほと

Acknowledgment

This is joint work with Astrid an Huef and Iain Raeburn.

(4 個) トイヨト イヨト

• Part 1: Groupoids $R(\psi)$ where $\psi: Y \to X$.

<ロト < 団ト < 団ト < 団ト

• Part 1: Groupoids $R(\psi)$ where $\psi: Y \to X$.

• Part 2: The C*-algebras associated to groupoids of the form $R(\psi)$.

くほと くほと くほと

• **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.

A B F A B F

- **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.

- **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.
- **Principal Groupoid:** A groupoid in which there is at most one morphism from one object to another.

- **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.
- **Principal Groupoid:** A groupoid in which there is at most one morphism from one object to another.
 - Principal groupoids are equivalence relations on $G^{(0)}$ (and vice versa)

- **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.
- **Principal Groupoid:** A groupoid in which there is at most one morphism from one object to another.
 - ▶ Principal groupoids are equivalence relations on $G^{(0)}$ (and vice versa) BUT as topological groupoids the topology might not be the same as the subspace topology from $G^{(0)} \times G^{(0)}$.

- **Groupoid:** A small category with inverses. The set of objects in a groupoid G is called the **unit space** and denoted $G^{(0)}$.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.
- **Principal Groupoid:** A groupoid in which there is at most one morphism from one object to another.
 - ▶ Principal groupoids are equivalence relations on $G^{(0)}$ (and vice versa) BUT as topological groupoids the topology might not be the same as the subspace topology from $G^{(0)} \times G^{(0)}$.
- **Orbit Space:** The set of equivalence classes (orbits) in the unit space, denoted $G^{(0)}/G$, where we say two units are equivalent if and only if there exists a morphism from one to the other.

イロト 不得 トイヨト イヨト 二日

- **Groupoid:** A small category with inverses. The set of objects in a groupoid *G* is called the **unit space** and denoted *G*⁽⁰⁾.
- **Topological Groupoid** is a groupoid equipped with a topology so that composition and inversion are continuous maps.
- **Principal Groupoid:** A groupoid in which there is at most one morphism from one object to another.
 - ▶ Principal groupoids are equivalence relations on G⁽⁰⁾ (and vice versa) BUT as topological groupoids the topology might not be the same as the subspace topology from G⁽⁰⁾ × G⁽⁰⁾.
- **Orbit Space:** The set of equivalence classes (orbits) in the unit space, denoted $G^{(0)}/G$, where we say two units are equivalent if and only if there exists a morphism from one to the other.
- Étale Groupoid A topological groupoid in which the range and source maps are local homeomorphism.

$$R(\psi) := \{ (y, z) \in Y \times Y \mid \psi(y) = \psi(z) \}.$$

イロト イポト イヨト イヨト

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

• $R(\psi)$ is an equivalence relation.

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.

→

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.

くほと くほと くほとう

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

くほと くほと くほとう

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

Define $h: X \to Y/R(\psi)$ by $h(x) = \psi^{-1}(x)$.

くぼう くほう くほう 二日

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

Define $h: X \to Y/R(\psi)$ by $h(x) = \psi^{-1}(x)$.

• *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

Define $h: X \to Y/R(\psi)$ by $h(x) = \psi^{-1}(x)$.

- *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.
- If X is a topological space and ψ is continuous, then h is an open map.

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

- *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.
- If X is a topological space and ψ is continuous, then h is an open map.
- If ψ is a quotient map then h is a homeomorphism of X onto $Y/R(\psi)$.

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

- *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.
- If X is a topological space and ψ is continuous, then h is an open map.
- If ψ is a quotient map then h is a homeomorphism of X onto $Y/R(\psi)$.

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

- *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.
- If X is a topological space and ψ is continuous, then h is an open map.
- If ψ is a quotient map then h is a homeomorphism of X onto $Y/R(\psi)$.

$$R(\psi) := \{(y,z) \in Y \times Y \mid \psi(y) = \psi(z)\}.$$

- $R(\psi)$ is an equivalence relation.
- $R(\psi)$ is a principal groupoid with unit space Y.
- $R(\psi)$ is a topological groupoid with the subspace topology from $Y \times Y$.
- If Y is Hausdorff, then so is $R(\psi)$.

- *h* is a bijection and $h \circ \psi : Y \to Y/R(\psi)$ is the quotient map.
- If X is a topological space and ψ is continuous, then h is an open map.
- If ψ is a quotient map then h is a homeomorphism of X onto $Y/R(\psi)$.

∃ →

< 🗇 🕨 < 🖃 🕨

Lemma

The groupoid $R(\psi)$ is étale if and only if ψ is a local homeomorphism.

Lemma

The groupoid $R(\psi)$ is étale if and only if ψ is a local homeomorphism.

• Unresolved issue: when is $R(\psi)$ locally compact?

Lemma

The groupoid $R(\psi)$ is étale if and only if ψ is a local homeomorphism.

• Unresolved issue: when is $R(\psi)$ locally compact?

Example

Take Y := [0, 1] and $X := \{a, b\}$ with topology $\{X, \{a\}, \emptyset\}$. Define $\psi : Y \to X$ by

$$\psi(y) = egin{cases} \mathsf{a} & ext{if } y > 0 \ \mathsf{b} & ext{if } y = 0, \end{cases}$$

Lemma

The groupoid $R(\psi)$ is étale if and only if ψ is a local homeomorphism.

• Unresolved issue: when is $R(\psi)$ locally compact?

Example

Take Y := [0, 1] and $X := \{a, b\}$ with topology $\{X, \{a\}, \emptyset\}$. Define $\psi : Y \to X$ by

$$\psi(y) = \begin{cases} a & \text{if } y > 0 \\ b & \text{if } y = 0. \end{cases}$$

Then ψ is a quotient map and

$${\sf R}(\psi) = ((0,1] imes (0,1])\cup\{(0,0)\}$$

is not a locally compact subset of $[0,1] \times [0,1]$.

Recall that $\psi: Y \to X$ where X is any topological space.

 The space X is not Hausdorff in general but if R(ψ) is locally compact, then X is T₁.

く伺き くまき くまき

イロト イヨト イヨト イヨト

A topological groupoid is **Cartan** if every unit $u \in G^{(0)}$ has a neighbourhood $W \in G^{(0)}$ so that the set

$$\{\gamma\in {\sf G}\mid {\sf s}(\gamma)\in {\sf W} ext{ and } {\sf r}(\gamma)\in {\sf W}\}$$

has compact closure.

A topological groupoid is **Cartan** if every unit $u \in G^{(0)}$ has a neighbourhood $W \in G^{(0)}$ so that the set

$$\{\gamma \in \mathsf{G} \mid \mathsf{s}(\gamma) \in \mathsf{W} \text{ and } \mathsf{r}(\gamma) \in \mathsf{W}\}$$

has compact closure.

Lemma

If $R(\psi)$ is locally compact, then $R(\psi)$ is Cartan.

・ 同 ト ・ ヨ ト ・ ヨ ト

A topological groupoid is **Cartan** if every unit $u \in G^{(0)}$ has a neighbourhood $W \in G^{(0)}$ so that the set

$$\{\gamma \in \mathsf{G} \mid \mathsf{s}(\gamma) \in \mathsf{W} \text{ and } \mathsf{r}(\gamma) \in \mathsf{W}\}$$

has compact closure.

Lemma

If $R(\psi)$ is locally compact, then $R(\psi)$ is Cartan.

Proposition

Suppose G is any LCH principal groupoid (with LHS).

A topological groupoid is **Cartan** if every unit $u \in G^{(0)}$ has a neighbourhood $W \in G^{(0)}$ so that the set

$$\{\gamma\in {\sf G}\mid {\sf s}(\gamma)\in {\sf W} ext{ and } {\sf r}(\gamma)\in {\sf W}\}$$

has compact closure.

Lemma

If $R(\psi)$ is locally compact, then $R(\psi)$ is Cartan.

Proposition

Suppose G is any LCH principal groupoid (with LHS). Then G is Cartan if and only if $G \cong R(\psi)$ for some quotient map ψ .

A topological groupoid is **Cartan** if every unit $u \in G^{(0)}$ has a neighbourhood $W \in G^{(0)}$ so that the set

$$\{\gamma \in \mathsf{G} \mid \mathsf{s}(\gamma) \in \mathsf{W} \text{ and } \mathsf{r}(\gamma) \in \mathsf{W}\}$$

has compact closure.

Lemma

If $R(\psi)$ is locally compact, then $R(\psi)$ is Cartan.

Proposition

Suppose G is any LCH principal groupoid (with LHS). Then G is Cartan if and only if $G \cong R(\psi)$ for some quotient map ψ .

Corollary

The groupoid G is Cartan if and only if the topology on G is the relative product topology on $G^{(0)} \times G^{(0)}$.

From each LCH groupoid (with a LHS), we can associate a C^* -algebra $C^*(G)$ by taking the completion on the convolution *-algebra $C_c(G)$ with respect to a particular norm.

From each LCH groupoid (with a LHS), we can associate a C^* -algebra $C^*(G)$ by taking the completion on the convolution *-algebra $C_c(G)$ with respect to a particular norm.

Proposition

If $R(\psi)$ is locally compact (with a LHS), then $C_r^*(R(\psi)) = C^*(R(\psi))$.

From each LCH groupoid (with a LHS), we can associate a C^* -algebra $C^*(G)$ by taking the completion on the convolution *-algebra $C_c(G)$ with respect to a particular norm.

Proposition

If $R(\psi)$ is locally compact (with a LHS), then $C_r^*(R(\psi)) = C^*(R(\psi))$.

Proof.

Because X is a T₁ space, all representations of $C^*(R(\psi))$ are induced. [C (2007)]

Lisa Orloff Clark (University of Otago) C^{*}-algebras associated to quotient maps

イロン イヨン イヨン イヨン

• A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.

A B A A B A

< 🗗 🕨

- A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.
- A positive element *a* of a *C**-algebra *A* is **abelian** if the hereditary *C**- subalgebra \overline{aAa} generated by *a* is commutative. Then *A* is generated as a *C**-algebra by its abelian elements if and only if *A* is a Fell algebra. [an Huef-Kumjian-Sims (2011)]

- A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.
- A positive element a of a C*-algebra A is abelian if the hereditary C*- subalgebra aAa generated by a is commutative. Then A is generated as a C*-algebra by its abelian elements if and only if A is a Fell algebra. [an Huef-Kumjian-Sims (2011)]
- A has continuous trace if and only if A is a Fell algebra and A^ is Hausdorff.

- A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.
- A positive element *a* of a *C**-algebra *A* is **abelian** if the hereditary *C**- subalgebra *aAa* generated by *a* is commutative. Then *A* is generated as a *C**-algebra by its abelian elements if and only if *A* is a Fell algebra. [an Huef-Kumjian-Sims (2011)]
- A has continuous trace if and only if A is a Fell algebra and A[^] is Hausdorff.
- Every Fell algebra is Morita equivalent to a "twisted" algebra associated to R(ψ). [Kumjian (1986), an Huef-Kumjian-Sims (2011)]

- A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.
- A positive element a of a C*-algebra A is abelian if the hereditary C*- subalgebra aAa generated by a is commutative. Then A is generated as a C*-algebra by its abelian elements if and only if A is a Fell algebra. [an Huef-Kumjian-Sims (2011)]
- A has continuous trace if and only if A is a Fell algebra and A[^] is Hausdorff.
- Every Fell algebra is Morita equivalent to a "twisted" algebra associated to $R(\psi)$. [Kumjian (1986), an Huef-Kumjian-Sims (2011)] (I LOVE THIS!)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A C^* -algebra A is a **Fell** algebra if every element of A^{\wedge} is a Fell point.
- A positive element a of a C*-algebra A is abelian if the hereditary C*- subalgebra aAa generated by a is commutative. Then A is generated as a C*-algebra by its abelian elements if and only if A is a Fell algebra. [an Huef-Kumjian-Sims (2011)]
- A has continuous trace if and only if A is a Fell algebra and A[^] is Hausdorff.
- Every Fell algebra is Morita equivalent to a "twisted" algebra associated to $R(\psi)$. [Kumjian (1986), an Huef-Kumjian-Sims (2011)] (I LOVE THIS!) and

 $\delta(A) = 0$ if and only if A is Morita equivalent to $C^*(R(\psi))$ for some ψ .

Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then $C^*(G)$ is a Fell algebra if and only if G is Cartan.

Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then $C^*(G)$ is a Fell algebra if and only if G is Cartan.

• If $R(\psi)$ is locally compact (with LHS), then $C^*(R(\psi))$ is a Fell algebra.

く伺き くまき くまき

Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then $C^*(G)$ is a Fell algebra if and only if G is Cartan.

- If $R(\psi)$ is locally compact (with LHS), then $C^*(R(\psi))$ is a Fell algebra.
- If in addition X is Hausdorff, then $C^*(R(\psi))$ has continuous trace.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

- 4 目 ト - 4 日 ト

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

Proof.

• Suppose $C^*(G)$ is Fell.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)
- Suppose $G \cong R(\psi)$.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)
- Suppose $G \cong R(\psi)$.
- Since G is locally compact, so is $R(\psi)$.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)
- Suppose $G \cong R(\psi)$.
- Since G is locally compact, so is $R(\psi)$.
- Then $R(\psi)$ is Cartan.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)
- Suppose $G \cong R(\psi)$.
- Since G is locally compact, so is $R(\psi)$.
- Then $R(\psi)$ is Cartan.
- Therefore $C^*(G) \cong C^*(R(\psi))$ is a Fell algebra.

Suppose G is LCH principal groupoid with LHS. Then $C^*(G)$ is a Fell algebra if and only if $G \cong R(\psi)$ for some quotient map ψ .

This is a generalisation of a result of Archbold and Somerset (1993).

- Suppose $C^*(G)$ is Fell.
- Then G is Cartan.
- Then $G \cong R(\psi)$ for some quotient map ψ . (Where ψ is the quotient map $q: G^{(0)} \to G^{(0)}/G$.)
- Suppose $G \cong R(\psi)$.
- Since G is locally compact, so is $R(\psi)$.
- Then $R(\psi)$ is Cartan.
- Therefore $C^*(G) \cong C^*(R(\psi))$ is a Fell algebra.

Twisted algebras

• We say σ is a 2-cocycle on a groupoid G if $\sigma : G^{(2)} \to \mathbb{T}$ such that $\sigma(\alpha, \beta)\sigma(\alpha\beta, \gamma) = \sigma(\beta, \gamma)\sigma(\alpha, \beta\gamma).$

▲ 同 ▶ → ● ▶

→

Twisted algebras

• We say σ is a 2-cocycle on a groupoid G if $\sigma : G^{(2)} \to \mathbb{T}$ such that $\sigma(\alpha, \beta)\sigma(\alpha\beta, \gamma) = \sigma(\beta, \gamma)\sigma(\alpha, \beta\gamma).$

• We write $C^*(G, \sigma)$ for the twisted C^* -algebra associated to a groupoid G; that is, the completion of $C_c(G, \sigma)$ (where convolution and involution are "twisted" by σ).

Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the following statements are equivalent:

- $G \cong R(\psi)$ for some quotient map ψ ;
- G is Cartan;
- C*(G) is a Fell algebra;
- for every continuous normalised 2-cocycle σ, C*(G, σ) is a Fell algebra.

Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the following statements are equivalent:

- $G \cong R(\psi)$ for some quotient map ψ ;
- G is Cartan;
- C*(G) is a Fell algebra;
- for every continuous normalised 2-cocycle σ , $C^*(G, \sigma)$ is a Fell algebra.

If items (1)–(4) are satisfied, then $C^*(G, \sigma) = C^*_r(G, \sigma)$.

Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the following statements are equivalent:

- $G \cong R(\psi)$ for some quotient map ψ ;
- G is Cartan;
- C*(G) is a Fell algebra;
- for every continuous normalised 2-cocycle σ , $C^*(G, \sigma)$ is a Fell algebra.

If items (1)–(4) are satisfied, then $C^*(G, \sigma) = C^*_r(G, \sigma)$.

 NOTE: We reconciled various notions of 'twisted groupoid C*-algebras'. For LCH principal and Cartan groupoid G (with LHS) and continuous normalised 2-cocylce σ we show

$$C^*(E_{\sigma};G) \cong C^*(G,\sigma) = C^*_r(G,\sigma) \cong C^*(\Gamma_{\sigma};G)$$

- R.J. Archbold and D.W.B. Somerset, Transition probabilities and trace functions for C*-algebras, Math. Scand. 73 (1993), 81–111.
- L.O. Clark, Classifying the types of principal groupoid C*-algebras, J. Operator Theory 57 (2007), 251–266.
- L.O. Clark and A. an Huef, The representation theory of C*-algebras associated to groupoids, *Math. Proc. Cambridge Philos. Soc.* 153 (2012), 167–191.
- L.O. Clark, A. and Huef and I. Raeburn, The equivalence relations of local homeomorphisms and Fell algebras, *New York J. Math.* 19 (2013), 1–28.
- A. an Huef, A. Kumjian and A. Sims, A Dixmier-Douady theorem for Fell algebras, *J. Funct. Anal.* 260 (2011), 1543–1581.
- A. Kumjian, On C*-diagonals, Canad. J. Math. 38 (1986), 969–1008.
- P.S. Muhly and D.P. Williams, Continuous trace groupoid C*-algebras II, Math. Scand. 70 (1992), 127–145.
- J. Renault, A Groupoid Approach to C*-Algebras, Springer-Verlag, Berlin, 1980.

The End.

PARS 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The End.

Thank you.

■ ∽ ○
PARS 2014

イロン イヨン イヨン イヨン