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e Part 1: Groupoids R(v)) where ¢ : Y — X.

o Part 2: The C*-algebras associated to groupoids of the form R(v)).
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Terminology

4

Groupoid: A small category with inverses. The set of objects in a
groupoid G is called the unit space and denoted G(©).

Topological Groupoid is a groupoid equipped with a topology so
that composition and inversion are continuous maps.

Principal Groupoid: A groupoid in which there is at most one
morphism from one object to another.
» Principal groupoids are equivalence relations on G(© (and vice versa)
BUT as topological groupoids the topology might not be the same as
the subspace topology from G(© x G(©),

Orbit Space: The set of equivalence classes (orbits) in the unit
space, denoted G(O)/G, where we say two units are equivalent if and
only if there exists a morphism from one to the other.

Etale Groupoid A topological groupoid in which the range and
source maps are local homeomorphism.
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Let ¢ : Y — X be a surjective map from a topological space Y to a set X.
Define

R() :={(y,2) € Y x Y | 9d(y) = ¢(2)}.
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Let ¢ : Y — X be a surjective map from a topological space Y to a set X.
Define
R() :={(y,2) e Y x Y [ ¥(y) = ¢(2)}.

o R() is an equivalence relation.

e R(%) is a principal groupoid with unit space Y.

e R(%) is a topological groupoid with the subspace topology from
Y xY.

o If Y is Hausdorff, then so is R(%)).

Define h: X — Y/R(¢) by h(x) = 1~ (x).
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Let ¢ : Y — X be a surjective map from a topological space Y to a set X.
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o If X is a topological space and 1 is continuous, then h is an open
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Lemma
The groupoid R(v)) is étale if and only if ¢ is a local homeomorphism. J

o Unresolved issue: when is R(%)) locally compact?

Example
Take Y :=[0,1] and X := {a, b} with topology {X,{a},0}. Define

v :Y — X by
a ify>0
zp(y)_{b )
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From now on we will assume that Y is a locally compact Hausdorff space,
X is any topological space, and ¢ : Y — X is a quotient map.

Lemma
The groupoid R(v)) is étale if and only if ¢ is a local homeomorphism. }

o Unresolved issue: when is R(%)) locally compact?

Example
Take Y :=[0,1] and X := {a, b} with topology {X,{a},0}. Define

Yv:Y — X by
_Ja ify>0
vly) = {b )
Then ) is a quotient map and
R(4) = ((0,1] x (0,1]) U {(0,0)}

is not a locally compact subset of [0, 1] x [0, 1].

V.
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Recall that ¥ : Y — X where X is any topological space.

@ The space X is not Hausdorff in general but if R(¢)) is locally
compact, then X is T7.
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Cartan Groupoids

A topological groupoid is Cartan if every unit u € G(% has a
neighbourhood W € G(® so that the set

{y€e€ G|s(y)e W and r(y) e W}
has compact closure.
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Proposition
Suppose G is any LCH principal groupoid (with LHS).
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Cartan Groupoids

A topological groupoid is Cartan if every unit u € G(% has a
neighbourhood W € G(® so that the set

{y€ G|s(y)e W and r(v) € W}
has compact closure.

Lemma
If R(v) is locally compact, then R(v) is Cartan.

Proposition

Suppose G is any LCH principal groupoid (with LHS). Then G is Cartan if
and only if G = R(1) for some quotient map .

v

Corollary
The groupoid G is Cartan if and only if the topology on G is the relative
product topology on G(© x G,
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Part 2: C*-algebras

From each LCH groupoid (with a LHS), we can associate a C*-algebra

C*(G) by taking the completion on the convolution x-algebra C.(G) with
respect to a particular norm.
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Part 2: C*-algebras

From each LCH groupoid (with a LHS), we can associate a C*-algebra
C*(G) by taking the completion on the convolution x-algebra C.(G) with
respect to a particular norm.

Proposition
If R(v) is locally compact (with a LHS), then C}(R(¢)) = C*(R(%)).

Proof.

Because X is a Ty space, all representations of C*(R(v))) are
induced. [C (2007)] 0
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@ A C*-algebra A is a Fell algebra if every element of A" is a Fell point.
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@ A C*-algebra A is a Fell algebra if every element of A" is a Fell point.
o A positive element a of a C*-algebra A is abelian if the hereditary
C*- subalgebra aAa generated by a is commutative. Then A is

generated as a C*-algebra by its abelian elements if and only if Ais a
Fell algebra. [an Huef-Kumjian-Sims (2011)]
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@ A C*-algebra A is a Fell algebra if every element of A" is a Fell point.

@ A positive element a of a C*-algebra A is abelian if the hereditary
C*- subalgebra aAa generated by a is commutative. Then A is
generated as a C*-algebra by its abelian elements if and only if A is a
Fell algebra. [an Huef-Kumjian-Sims (2011)]

@ A has continuous trace if and only if A is a Fell algebra and A" is
Hausdorff.

o Every Fell algebra is Morita equivalent to a “twisted” algebra
associated to R(%). [Kumjian (1986), an Huef-Kumjian-Sims (2011)]

(I LOVE THIS!)

and

0(A) = 0 if and only if A is Morita equivalent to C*(R(v)) for some
Y.
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Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then C*(G) is a Fell
algebra if and only if G is Cartan.
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Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then C*(G) is a Fell
algebra if and only if G is Cartan.

o If R(%) is locally compact (with LHS), then C*(R(%))) is a Fell
algebra.
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Theorem (C (2007))

Suppose G is a LCH principal groupoid (with LHS). Then C*(G) is a Fell
algebra if and only if G is Cartan.

o If R(%) is locally compact (with LHS), then C*(R(%))) is a Fell
algebra.

o If in addition X is Hausdorff, then C*(R(%)) has continuous trace.
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Theorem (C-an Huef-Raeburn (2013))

Suppose G is LCH principal groupoid with LHS. Then C*(G) is a Fell
algebra if and only if G = R(v) for some quotient map 1.
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Theorem (C-an Huef-Raeburn (2013))

Suppose G is LCH principal groupoid with LHS. Then C*(G) is a Fell
algebra if and only if G = R(v) for some quotient map 1.

This is a generalisation of a result of Archbold and Somerset (1993).
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Theorem (C-an Huef-Raeburn (2013))

Suppose G is LCH principal groupoid with LHS. Then C*(G) is a Fell
algebra if and only if G = R(1)) for some quotient map .

This is a generalisation of a result of Archbold and Somerset (1993).

Proof.
o Suppose C*(G) is Fell.

v
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Twisted algebras

o We say o is a 2-cocycle on a groupoid G if o : G() — T such that

o(a, B)o(aB,v) = o(B,7)o(a, B7).
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-
Twisted algebras

o We say o is a 2-cocycle on a groupoid G if o : G® — T such that

o(a, B)o(aB,v) = o(B,7)o(a, B7).

o We write C*(G, o) for the twisted C*-algebra associated to a
groupoid G; that is, the completion of C.(G, o) (where convolution
and involution are “twisted" by o).
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Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the
following statements are equivalent:

Q G = R() for some quotient map 1;
Q G is Cartan;
©Q C*(G) is a Fell algebra;

Q for every continuous normalised 2-cocycle o, C*(G, o) is a Fell
algebra.
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Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the
following statements are equivalent:

Q G = R() for some quotient map 1;
Q G is Cartan;
©Q C*(G) is a Fell algebra;

Q for every continuous normalised 2-cocycle o, C*(G, o) is a Fell
algebra.

If items (1)<(4) are satisfied, then C*(G,o0) = C}(G,0).
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Theorem (C-an Huef (2012), C-an Huef-Raeburn (2013))

Suppose that G is a LCH principal groupoid (with LHS). Then the
following statements are equivalent:

Q G = R() for some quotient map 1;
Q G is Cartan;
©Q C*(G) is a Fell algebra;

Q for every continuous normalised 2-cocycle o, C*(G, o) is a Fell
algebra.

If items (1)<(4) are satisfied, then C*(G,o0) = C}(G,0).

o NOTE: We reconciled various notions of ‘twisted groupoid
C*-algebras’. For LCH principal and Cartan groupoid G (with LHS)
and continuous normalised 2-cocylce o we show

C*(E,; G) = C*(G,0) = C/(G,0) = C*(T; G)
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The End.

Lisa Orloff Clark (University of Otago)

algebras associated to quotient maps

DA




The End.
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